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An attempt is made here to describe distribution of residence times of a fluid in a nonideal flow
mixer for turbulent flow of the charge, i.e. for the case when the flow velocity exhibits random
fluctuations. The analysis is based on the assumption that the flow of fluid in mixer may be
considered as a stationary Markov’s process and is aimed at application of the mixer as a linear
filter.

The most frequent approach to study of flow mixer — both from theoretical and experimental
point of view — isstudy of residence time distribution of fluid in this mixer. This approach has been
introduced in chemical engineering for the first time probably by Danckwerts'. Residence time
distribution function is used in chemical engineering for analysis of operation of flow units,
it is possible to determine the ratio of nonactive (dead) regions and by-pass flow, intensity of
backmixing and deviations from ideal mixer and in the case of linear chemical kinetics, conversion
in flow reactors?.

With development of process modelling by computers attention is paid to another function
of the flow mixer which is adequate to the function of a linear filter in communication cngineer-
ings. Transfer and first of all smoothing of the input concentration or less frequently of tempera-
ture signal by the mixer is concerned .The considered transfer of the signal by flow mixer can be in
general described by an integral operator

c.(i) = f " o(t, ) Ci(x) dr 1)

where C; and C, are input or output signals (e.g. concentrations) which are in general random
functions of time, function ¢ is probability density of residence times in the mixer.

The first studies concerning application of flow mixers for smoothing of non-desirable fluctua-
tions of properties of material streams in continuous processes were published in chemical engi-
neering literature simultaneously with introduction of the concept of residence time distribution
in such units. For example Danckwerts! and Sellers*:> have in general demonstrated dependence
of variance of concentration fluctuations in the outlet stream of the flow mixer on residence time
distribution of the liquid in it and on stochastic properties of concentration fluctuations in the
input stream of the mixer. Katz® and Kramers with Albeda’ have studied smoothing function of

* Part ILX in the series Studies on Mixing; Part LX This Journal 49, 490 (1984).
b Present adress: Institute of Microbiology, Viden:ka 1083, Prague 4, Czechoslovak Acad-
emy of Sciences.
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the cascade of ideal mixers for the case when the input concentration signal is a random stationary
signal with the autocorrelation function R(t) of the form

R(z) = o} exp (—al1]), (2

where aiz is the variance of the signal and ais a constant. The same signal at the inlet into the mixer
has been considered by Baun and Katz® who have expressed the residence time distribution of
liquid in the mixer by x2 distribution and e.g. by Kraj® and Graichen'?!! who have dealt first
of all with determination of capacity of the mixer necessary for reaching of the required degree
of smoothing of fluctuations.

Considerable attention has been paid in the published studies to smcothing of periodic con-
centration fluctuations (especially harmonic and rectangular pulses e.g.'z— '4‘20‘2'). These
authors have demonstrated that this type of fluctuations can be completely eliminated by suitable
arrangement of the mixer (by introducing the by-pass and short-circuiting streams).

Recently there has been published a number of papers'® ~'° where an attempt has been made
to optimise the smoothing efficiency of the mixer to whose inlet comes a staticnary random con-
centration signal with the autocorrelation function of the form (2) or of a more general form

R(t) = o7 exp (—alt]) cos bt (3

where b is characterising the periodic component present in the input signal, by suitable arrange-
ment of the flow system (i.e. by changing the shape of the distribution function of residence
times). Conclusions of these studies have demonstrated that by addition of the by-pass (or short
circuiting) stream of the mixer it is possible to reach (at suitable selection of parameters of the
system mixer-by-pass stream) a better smoothing then with the mixer alone, also in the case of
random (not of only periodic) inlet signal.

Very small attention has been devoted in the publithed literature to experimental determination
of smoothing effectiveness of flow mixers and comparison of the so obtained data with theoretical
values. Visman and Krevelen?® have measured the degree of smoothing of periodic concentration
fluctuations in the bubbled mixer and experimental results were treated in the form of a correlation
in which the smoothing degree si plotted against process conditions (volumetric flow rates of
liquid and gas, frequency of fluctuations erc.) Comparison of experimental data with theoretical
model has not been made. Hiby and Tsuge?! have measured the degree of smoothing of a periodic
concentration signal. The mixer they have used was mixed only by the stream of entering liquid
and smoothing degrees measured were in good agreement with values determined on basis of the
model of flow in the mixer.

Smoothing action of the flow mixer determine as follows from Eq.(/) two factors - statistical
properties of the inlet signal and residence time distrituticn function cf liquid in the mixer. Even
that the stochastic character of residence time distributicn function in the nonideally mixed flow
system has been proved experimentally22 =25 and for some cases also described theoretically?® =29
a very small attention has been devoted in literature to the effect cf this fact cn the smcothing
cefficiency of the mixer. For example Vaclavek?#+25 on basis of theoretical analysis by Pugachev®
has used for description of the flow system staticnary stcchastic cperator and has derived a rela-
tion describing the increase in value of variance of concentraticn signal at the outlet from the mixer
if compared with the case when the system behaves in deterministic manner. He has dcmonstrated
the decisive role of the autocorrelation function of residence time distribution in the mixer on this.
icreanse in variance.
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774 Kudrna, Hasal, Vyhlidkova:

In this study and attempt is made toward explanation of relation between linear
operator describing the mixer from the point of view of the transfer of concentration
(or some other) signal and hydrodynamic conditions in this nonideally stirred mixer
and formulation of assumptions and conditions necessary for description of the
smoothing effectiveness of this mixer.

THEORETICAL

BASIC CONCEPTS AND RELATIONS

Let us consider a flow mixer schematically depicted in Fig. 1 of volume Q, fully filled
by incompressible liquid. Let us assume that it is possible to observe motion of one
liquid particle, called indicating particle. Its position in moment ¢ is given by the end
of the position vector X(t). According to the model presented earlier®°-*! for the
one-dimensional space it is considered that the indicating particle is moving so that
itis carried in each moment by the liquid with the velocity ¥(1). To this macro-motion
is superimposed micro-motion due to random interactions with other particles so
that the resulting effect is satisfying conditions of the Wiener’s process W(r). Thus
the relation holds

dX(1) = V(1) dt + o dW(1), )

FiG. 1
Motion of indicating particle in the mixer
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which is the stochastic differential equation describing motion of the indicating partic-
le (Fig. 1).

Quantities X(t) and V(f) are in general random functions of time for which there
exists in each moment a probability density function defined by relation

fi(x, v 1) =A}2i1130(1/AQx AQ)) P{X(1) e AQ,(x), V(i) e AQ,(v)} . (%)

AQ, -0

The probability that the observed particle is located in the moment ¢ in a small
neighbourhood AQ, of the point with the position vector x is written inthe braces.
Velocity of liquid and thus also indicating particle velocity in this moment takes
value from small neighbourhood of the point v in the configuration space of velocities
Q.. Velocity of particle in each moment can be really considered as equal to the velo-
city of liquid with respect to the fact that the part of change in the position vector
dX(t) corresponding to the Wiener’s process does not have a derivative and thus it
cannot determine the relative particle velocity with respect to that of liquid®®-32,
Let us denote that the space Q, of the charge is limited by its boundaries, while the
space of velocities is not limited. Relation (5) is not written exactly as there is not
prescribed the manner of convergence of small elements AQ, and AQ,. More exact
definition can be found in corresponding literature (e.g.>?). Here the illustrative
interpretation of the considered phenomena is considered primarily.

To be able to describe “behaviour” of the particle in the mixer following postulate
is accepted: P1. Sum of random ‘and nonrandom effects acting on the liquid (i.e.
mechanical forces and reactions, first of all action of the mixer) is such that the random
position of liquid particles and liquid velocity can be interpreted as stationary
Markov process34.

From the made assumption results that forces, either deterministic or of random
character could not be explicite functions of time, the mixing unit must be operated
so that liquid flow is in steady state.

This assumption makes possible to write the relation for transitive (conditional)
probability density for position of particle and liquid velocity in the form

fa(x,v; 1 | y,u; 1) =
= lim (1/AQ, AQ,) P{X(f) € AQ,(x), V(1) € AQ(v) | X(z) =y, ¥(7) = u}

AQx—0
AR,—0

[t>1], (6)

where the relation in the brace is expressing probability that in time ¢ the particle
will be situated in small subspaces AQ,(x) and AQ,(v) at the condition that in pre-
ceeding moment 7 it has been situated in the point y and its velocity was equal to u.
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776 Kudrna, Hasal, Vyhlidkova :

In the case the distribution of particle positions and liquid velocities is known in the
moment 7, characterised by the probability density f5(y, u, ) it is possible to write

filx,v; 1) = J f2(x, v t| y, u; ©) fa(y, u; 7) dQ(u) dQ,(y), (7)

v

where the suggested integration is made, with regard to variables y and u over the
whole mixer volume Q, and the unlimited configurative space of velocities. Relation
(7) is expressing the basic property of the Markov process, i.e. that this process
in the moment ¢t depends only on the state of the process in a moment 7 < ¢ and is
not a function of states in preceeding moments.

For the stationary process the transitive probability density is a function only
of the time interval between moments ¢ and 7 and not of moments alone3*, i.e.
the relation holds

fa(x,vst|y,ust) = fo(x,v;t — 1|y, u). ()

With regard to assumption P1 a stationary probability density for liquid velocity
which is not a function of time must exist in each point of the charge, i.e. in each
point of the space Q,. It could be expressed by relation

So(v [ x) = lim fy(v; ] x). ©)

Both these expressions are characterising distribution of liquid velocities in the point
x € Q, (conditional probability densities are meant) after decay of transition effects,
i.e. after steading of the process from the moment of beginning of operation of
the flow mixer.

Relation between liquid velocities in different time moments from decay of transi-
tion effects gives the so called second probability density®*:3* defined by relation

fo(vit — 7|y, x) =
=A220(1/AQV) P{V(t — 1) e AQ,(v) | ¥(0) = u, X(t — 1) = X(0) = x} [t > 1]

(10)

which is with the stationary (so called first) probability density related by relation

fs(v|x) = L}fc,(v; t —t|u, x)fs(u| x)dQ,(u) (11)
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which is expressing the obviousinvariability of translation of ‘“steady” distribution
of velocities with respect to the time axis.

RESIDENCE TIME OF INDICATING PARTICLE IN THE MIXER

Let us denote motion of indicating particle from the moment of its entry into the
mixer up to the moment when this particle leaves the mixer. Further assumption must
be introduced in this case: P2.Particle enters into the mixer through the inlet hole
in the point x; with velocity V(¢) which is also a stationary process and leaves the
mixer through the exit hole in point x, after time interval T with velocity V(). Each
particle can enter and leave the mixer only once.

This assumption first of all simplifies the situation as it substitutes the area of inlet
and outlet hole by a single point. This simplification is adequate to the assumption
that particle is passing through an arbitrary point of the cross-sectional area of the
inlet hole with uniform probability and that distribution of velocities V(f) is also
identical for each point of this cross section. Moreover there is assumed that the ine-
quality V(7). n; < 0, holds where n; is the external normal to the area of inlet hole.
Identical assumption holds for the exit hole with the difference that V(¢) . n, > 0.

Finally, this assumption makes possible to write the initial condition for description
of motion of the indicating particle in the form

fa(ysus©) = 8,y — x;) fs(u]y), (12)

where 6,(.) is the three-dimensional Dirac function which is expressing the fact
that in the initial moment the particle is located in the inlet hole.

Now it is possible to write the probability density fy(.) for position of the indicating
particle and liquid velocity in the mixer which enters into it in moment 7. With respect
to Eqgs (7), (8) and (12) the relation is obtained

filx, vt — 1) = J fa(x, v t—1 |y, u) S (y—x;) fs(u | y) d2,(u) dQ,(y) . (13)

Let us denote the time interval in this equation by symbol 6 = t — t and calculate
the marginal probability density for position of indicating particle by integration
over the velocity configuration space @, according to relation

£(x; 6) = J' (0¥ 0)40(). (14)
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778 Kudrna, Hasal, Vyhlidkova :

where f,(.) is characterising the probability that the indicating particle, in the time
interval 0 from the moment of entrance into the mixer, will be located in close vicinity
of the point x, withoutregard to its velocity. Then it is possible to calculate easily
the distribution function of residence times in the mixer3? by use of relation

F@)=1-P{T>0) =1 — J Fi(x; 0) d2y(x) (15)

The integral in the last term is expressing the probability that the particle is in moment
t still in the mixer.

The corresponding probability density for the residence time T is then determined
from relation

5:0) = 35 FO) = = 25 | 10 40,00, (16)

The function f5(.) is usually determined experimentally from the mixer response
to the input signal in the form of Dirac (unit) impuls. Here is explained why — at least
within the limits of the presented model — it is not possible to determine this function
by one experiment.

Let us assume first of all that it is possible to interchange the sequence of mathe-
matical operations in Eqs (14) and (16). Then the relation can be written

o = -2 f £1(x,v: 0) d2,(x) 17)

which is denoting the joint probability density of particle residence times and liquid
velocity independently on position of the particle. This means that expression
fs(t — 7, v) At denotes probability that the indicating particle leaves the mixer in the
time interval [t, ¢ + At] with velocity close to v (more accurately said by velocity
from subspace AQ(v)).

The marginal probability density with respect to variable v is obtained by integra-
tion over all possible values of 6. There obviously holds

folv) = J:fs((?, v)do = ffs(z — V) di = J‘ imfs(t —nv)de.  (18)

It is possible to explain by this last equation the physical meaning of function f,.
The second integral is characterising all possible passages of the indicating particle
with various velocities at the assumption that this particle in the moment 7 has entered
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Studies on Mixing 779

into the mixer. It is equal to the third integral which at stationary liquid flow is
characterising distribution of flow velocities of all liquid particles at the outlet of the
mixer in the moment t. Each of these particles could have entered into the mixer in
any moment 7 < t. Function f, is thus characterising distribution of liquid velocities
at the outlet from the mixer i.e. with respect to Eq. (9) the relation must hold

fo(v) = fs(v| x.). (19)

Let us write finally, probability density for residence times T conditioned with
respect to liquid velocity at the outlet from the mixer

nwwp%%f. (20)

Probability density f}, is a function of parameter v which could be randomised?>.
According to considerations made earlier3! this means that it is possible to consider
probability density f, as a function of random liquid velocity V,(6) at the outlet
from the mixer and that it is also a random function of time according to relation

J1o(0 | v) = f10(0, Ve(0)) = ¢(0) - (21)

Distribution of liquid velocities at the outlet is the result of all, thus also of random
effects which act on this liquid during its passage through the mixer. These effects
then cause the stochastic character of residence time distributions in the mixer which
is expressed by “‘stochastic” probability density ¢(0).

The expected value of this function we can found by integration over the con-
figuration space Q, i.e. over all values of the randomised parameter v. With regard
to relations (14), (19) and (20) the relation is obtained (again possibility of interchange
of the sequence of mathematical operations is proposed)

WWM=LMGMAMWM=L&WGWMHL@, (22)

which is the ‘‘usual stochastic” probability density of residence times in the mixer.
From Eqs (18), (20) and (21) moreover after integration results

rqs(o) do = rf,o(om do =1, (23)

0

which means that with the probability equal to one the indicating particle leaves the
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780 Kudrna, Hasal, Vyhlidkova :

mixer. The same conclusion also holds for the expected value
j f7(6)do = 1. (24)
0

Now the second moment of function ¢ will be calculated.

AUTOCORRELATION FUNCTION FOR PROBABILITY DENSITY OF RESIDENCE TIMES
OF INDICATING PARTICLE IN THE MIXER

Second important characteristic for description of motion oftheindicating particle
is the correlation or autocorrelation function. In the case of Markov processes
whose probability characteristics depend at maximum on two time arguments this
function is usually sufficient (together with the expected value) for description of
the considered process.

Let us define by usual procedure the autocorrelation function for the probability
density of residence times ¢

K,[0, 0,] = M[$(6) ¢(0,)] — M[4(6)] M[4(6,)] , (25)

where the time interval 0, is given by relation 0, = ¢; — 1.

Here is explained what is — within the frame of the model presented — the reason
for the correlation link between functions ¢(6) and ¢(6,). Function ¢(6) according
to the proposed model is randomised by liquid velocity at the outlet from the mixer
V.(6) and function ¢(0,) by liquid velocity V,(0,). Autocorrelation link between
these two velocities is obviously the reason of the link between the considered sto-
chastic probability densities of residence time. With regard to Eqs (8), (11) and (19)
is the link between velocities at the outled given by relation

fo(v) = J; fo(v; 0 — 0y | u, x,) fo(u) dQ(u) . (26)

Note: According to assumption P2 the parameter x, is a constant and will be
omitted in the following part.

This approach is now used for definition of the autocorrelation function K,

Ky(0,0,) = J

(o

Qflo(o l V) f10(91 I “)fs(V; 60— 0, I u)f9(“) dQv(u) dQv(V) -

_ '[ 019 £:0) 400). f Fua0s | 0)5(6) d2,). 27)
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It is obvious that autocorrelation function K, depends not only on intervals 6 and 6,
but also on their difference.

In the case that intervals 6 and 0, reach the same values, the ‘randomisation
factors”, i.e. liquid velocities ¥(0) and V(6), will also become identical. Transitive
probability density f¢ is so transformed into the Dirac function

lim f(v; 6 — 0, | u) = 6,(v — u) (28)

01—’9

and Eq. (27) after integration with respect to u becomesinto the relation for dispersion
of residence time probability density

K0.0) = DL = | S0 |9 1ls) a0 - [ [ REUREC dfzm]z .
(29)

Finaly another property of the autocorrelation function K¢(0, 0,) is mentioned.
Let us define the integral

1= f [6(6) — £:(6)] do . (30)
(0]
The relation for its dispersion holds®

D[I] = j ) J:K"(B’ 6,)d0 do, . 31)

With regard to relations (23) and (24) the value of integral I is equal to zero i.e.
to constant value. Dispersion of constant is then also equal to zero and thus there
holds

I J K,(0, 0,)d0d0, = 0. (32)
0 0

Probability characteristics derived previously, i.e. the expected value of residence
time distribution defined by Eq. (22) and its autocorrelation function, determined by
Egs (25) and (27) with sufficient accuracy — with respect to next considerations —
describe random phenomena originating due to the action of the mixing device. These
functions can be estimated in the statistical sense by repeated measurements of res-
ponses to the unit impulse under the same conditions. The fittness of the estimates
increases with the number of measurements repeated.
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The relations derived in previous parts are now applied for study of the mixer
as a linear filter.

TRANSFORMATION OF RANDOM CONCENTRATION SIGNAL AT PASSAGE THROUGH
THE NONIDEAL MIXER

Let us consider a concentration signal of indicating compound Cy(7) (Fig. 1) entering
continuously into the mixer. An attempt will be made here for determination of the
probability characteristics of the outlet concentration signal C,(f).

In general this relation can be written by use of integral (1) in which the integral
core ¢ is in general a random function of two variables (moment of inlet v and
moment of outlet ¢).

The form of this function or its random character is determined by flow in the mixer,
i.e. by the action of the mixer and the effect of entering stream. It is demonstrated
in which sense this integral core is identical with function ¢ derived in preceding
paragraphs, i.e. when the equivalence could be written

¢t 7) = ot — 7) = $(0) (33)

i.e. it is possible to substitute for ¢ and 7 their difference.

Further assumption is therefore introduced concerning properties of the inlet
signal: P3. Concentration signal Cy(t) is a continuousrandom function of time which
is stationary and ergodic with the mean value ¢; = const. and autocorrelation function
K;(h). This signal does not depend on liquid distribution entering the mixer and is
not affecting by any way flow in the mixer.

Second part of this assumption in accordance with the preceeding considerations
implies the statement that the input signal C; and integral core ¢ are statistically in-
dependent. This holds obviously only approximately as fluctuation of liquid velocity
in the inlet piping affect to a certain extent input signal. But it is expressing the idea
that the basical causes of concentration changes are of different origin (they for
e.g. originate at production of a component whose concentration is considered)
than the effect of flowing liquid, its mixing effect in the inlet piping is thus considered
to be negligibly small.

The statement in Eq. (1)is now precised. The assumption of continuous input of the
concentration signal makes possible to integrate over the unlimited extent of variable 7.
The ergodic property of the input signal will not be considered yet and at first the
expected value of both sides of this equation are looked for

M[C.()] = M [ j i:¢(1, 0 C9) df] _ j t:M[qS(t, IMIC()] de. (349)
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Second relation holds at the assumption that it is possible to interchange the in-
tegration with calculation of the expected value and that, as results from assumption
P3, the functions ¢ and C; are independent. Withrespect to Eq. (22) the expected
value of ¢ is a function of the difference of integral variables ¢ = t — 7 so that after
the interchange of variables the relation holds

M[C.(1] = f O M[C( — 0] 40 = ¢, f oo =c. (35

-0 - 0

The last equation holds also with respect to Eq. (24). So the familiar relation has
been obtained
M[C ()] =¢. =¢ (36)

according to which is the expected value of the input concentration signal at consi-
dered conditions independent of time and is equal to the expected value of the input
signal.

Now the second moment for Eq. (1) is written. With regard to the assumption of
independence of functions ¢ and C; the relation is obtained

M[C.(1) C.(t1)] = J f jwM[q‘)(t, 2 ¢ty 7] M[C,(x) Ce)] de de, . (37)

With regard to Eqs (25) and (27) the second moment of function ¢ depends only on the
difference of their arguments so that after analogous interchange of variables as in
calculation of integral (35) the relation is obtained

MC(1) C(11)] = J iw j jwM[d)(()) (0] M[Ci(t — 0) Ci(ts — 0,)]d0d0, . (38)

Second moments with respect to origin are in this function substituted by central
moments, i.e. by autocorrelation functions, with Egs (22), (25), (35) and (36) taken
into account the relation follows

Kt t,) + ¢ =

- f f TR0.0) + HOAON K = 0.1, = 0) + 19000, . (39)

If the subintegral terms in square brackets are multiplied all terms including the
constant coefficient ¢; vanish. First of them because the integral of autocorrelation
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function K, is with regard to Eq. (32) equal to zero. Second term is on basis of Eq.
(24) equal to &}, this term vanishes with regard to the second one in Eq. (36) with the
corresponding term on the left hand side of relation (39). Finally the autocorrelation
function K; depends according to assumption P3 only on the difference of its argu-
ments. Thus

t—t, =h (40)
and Eq. (39) is simplified

K.(h) = f j°° J iw[f7(0) £:(0) + Ko(0, 0)] . Ki(l + 0, — 0)d6do, . (41)

It is obvious that the autocorrelation function K, of the output signal is also a function
of only a single argument. For identical values of arguments t and t; Eq. (41) is
reduced to the relation for variance of the output signal

k(0 = pLe( = [ [0 500 + K000 K0, - o) a0 a0, ()

and relation

_K{0) _ pC(0)] )
Ki(0) ~ DC()] |

i.e. ratio of dispersions of the output and input signals is used usually as the measure
of smoothing ability of the mixer.

Finally it is demonstrated that at validity of the first part of assumption P3 the
characteristics of the output signal can be fourd from one experimental realisation.
The inlet signal is according to this assumption a stationary ergedic function. Value
of the autocorrelation function converges to zero if its argument rises to infinity3. Thus
there holds lim K (h + 0, — 0) = 0 and on basis of Eq. (41) also lim K.(h) = 0.

h—-w

h— o
The output signal is thus also a stationary ergodic functicn and for calculation

of the mean value and of autocorrelation function the relations can be then used

¢, = lim (1/2T)£T J‘Mf7(0) Ci(t — 0)dodt (44)

T— o0 -

K.(5) = tim 127) | [ U050 + k0.0

. Cl(h + 01 - 0 + tl) Cl(ll) d0 del dtl . (45)
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Relations (43) to (45) can be in practice used for calculation of smoothing effectiveness
of the mixer.

DISCUSSION

As has been already stated inintroduction of this study, ideas and relations presented
here have been aimed at more deep analysis of integral operator in Eq. (1) first of all
with regard to smoothing effectiveness of nonideal mixer.

As is known in communication engineering®® or in theory of automatic control
this operator is used for calculation of response (in our case denoted as C(f)) to the
input signal C;(r) in systems described by ordinary differential equations (or by their
system) with the time argument

3 al() @'C.(0)dt) = € 1) (46)

It is assumed that the integral core ¢(t, 7) is a deterministic function of two (time)
arguments. Moreover it has been proved3® that as long as the coefficients a; in the
mentioned differential equations are not a function of time both arguments in the
integral core can be substituted by their difference, i.e. there holds ¢(t, 7) = ¢(t — 7).
Integral operator then is sometimes called a stationary one. Input signal then might
be both deterministic or stochastic with the adequate character of response.

As has been correctly pointed out by Vdclavek?*'25 the response can become sto-
chastic even in the case when the input signal is determinstic. This is the case when
character of flow in the mixer is causing random fluctuations of the output signal,
i.e. the integral core ¢ becomes stochastic.

But in this case the coefficients of mentioned differential equations need to be
(random) functions of time and the question arises whether or at which conditions
it is possible to consider the stochastic integral core as a function of a single argument,
i.e. whether or at which conditions there exists a stationary stochastic integral opera-
for in the form

() = j iqu(t 1) () de. (47)

Vaclavek?*2% postulates the existence of such operator without proves. This study
represents an attempt for a prove of Eq. (47) for the concrete chemical engineering
equipment. It is necessary to state that the assumptions made here lead only to the
statement that the first two moments of terms in Eq. (47) hold. Analogically to the
terminology used in studies of stochastic functions it is possible to state that there
exists a stationary stochastic integral operator in a wide sense.
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General prove would be perhaps very complicated as e.g. it is known3® that, if
distribution of the input signal is not Gaussian, it is possible only with difficulties
to obtain information on distribution of the input signal. Distribution of the input
signal could be obviously approximated by normal distribution in the best case ap-
proximately as the concentration signal could reach only nonnegative values. Theo-
retically it could be possible to use the procedure described in the study of Kattan
and Adler3” for computation of conversions of nonideal stirred reactor. But functions
of concentration distributions in this study are a priori postulated and it is not ob-
vious how it could be possible to use this procedure in applications.

Relations derived in this study are based on the basic concept of motion of indi-
cating liquid particle in the stationary (in stochastic sense) moving incompressible
liquid, while both these processes could be considered to be stationary and Markov.
It has been demonstrated earlier®°-3! that on basis of the law of large numbers motion
of large quantity of indicating particles represents a spread of a concentration impuls
of the indicating compound. Both these two assumptions are the necessary conditions:
Postulate in Markov process property means that motion of particles depends only
on initial conditions and is thus not a function of some transitive states in next
moments (i.e. the familiar analogy exists with deterministic motion of the mass point
in the force field). Second assumption on stationarity of the process makes possible
to substitute for the two time arguments of the Markov process (“simultaneous”
moment ¢ and initial moment ) by their difference. It is necessary to realize the diffe-
rence in assumptions on liquid motion and of the indicating compound: It is assumed
that while liquid motion has reached steady state before the moment of inlet of the
indicating compound (e.g. from the beginning of the experiment, when the nonmixed
liquid was at rest) concentration of the indicating compound could not steady in
the flow system( as long as the input signal depends on time).

To illustrate this statement let us give an example on motion of the indicating par-
ticle in an unidimensional unlimited space which could be solved analytically. At
assumptions concerning forces which act on this particle made in earlier studies®®
it is possible to write the relation for the transitive probability density of particle
position and its velocity (illustration of function f, in Eqs (6) and (8)) in the form

fF(x, 0t =]y u) =
= 1 exp - {c“i‘/—({ — )_6)2 — 2k"v(x - x) (U - l_)) + kxx(u - D)z
27 (kxxkvv - kfv)llz 2(kxka _ kfv) ’

(48)
where parameters of this equation are given by relations

X=B(t—1)+ y+ (Bla)(exp(—at — 7)) — 1) + (ufa) (1 — exp [—oft — 7)]);
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5=p+(u— Bexp[—at - 7],
kew = (260) (1 = © — [exp (=20t — D))[26] + [2 exp (—aft — 7))fa] — 3/24),
ke = (e2)o) (1 + exp [=2u(t — 7)] — 2exp [—oft — 7]},
kyy = 6%(1 — exp (=2a(t — 7)) . (49)

Particle velocity equal to the liquid velocity is in this case not a function of its position
and corresponding transitive probability density is given by relation (illustration of
function f, in relation (10))

. 1 x| — (v — )
o(vst—1|u) = T P[ —-—2kw ] (50)

Relation for steady flow is in this case obtained when the argument ¢ increases to
infinity (illustration of function f5 and of equation (9))

fi) = 1Lnlf:(v; t—1|u)= \/(Zln)e exp[— %iz—mf] (51

It is possible to prove that there holds
+ oo
5() =J fo(vs t — 7| u) fs(u) du =

- jm ! exp[— (Ul U _Zﬂ)z] du . (51a)

—w 21 \/(kyy) 2k,, 2

Finally it is possible to use the initial conditions (illustration of function f; and
relation (12))

Xy, u) = -—x-—l—ex _(u—ﬂ)?
f3(pu) =0y — x; T p[ ] (52

2¢?
and to prove that there holds (illustration of function f; and Eq. (13))

fHx, vt —1) = j+w j+wf;(x, v;t — 1|y, u)d(y — x))fs(u)dudy, (52a)

where the result is also a twodimensional normal distribution as in relation (48)
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with the difference that corresponding parameters are given by relations

X=p(t—1)
5=p
ke = (262[0%) (ot — ) — 1 + exp (—oft — 7))
kay = (&%]o) (1 — exp (a(t — 7))

k,, = ¢&*. (53)

It is obvious that parameter ¢ denoting the expected velocity and its variance k,,
are not functions of time, other parameters describing motion of particles express,
in accordance with the earlier considerations made, spread of concentration of indi-
cating particles in time in the stream of stationary liquid.

Note: It is obvious that if argument # rises particle concentration (proportional to
probability density f;) converges for each point of unlimited axis toward zero. These
cases obviously do not have a large practical significance. But in the last study it has
been demonstrated*® that in a limited (i.e. nonflow) unidimensional mixer it converges
to uniform probability density, i.e. concentration of indicating particles is of course
in steady state at all points of the mixer equal.

Here are also mentioned considerations which lead as limiting cases to usual types
of flow in the mixer: From Eq. (4) and on basis of earlier made considerations (for
a unidimensional case?®) results that there exist two cases of a random shift dX
of the particle in the mixer. This could be either the effect of liquid velocity V(¢)dt;
in the case this velocity is a random function of time turbulent contribution to random
motion is concerned, or in the opposite case lamirar flow is concerned. Secord term
of Eq. (4) ¢ dW(1) is characterising the diffusion contribution, i.e. mutual interactions
of particles; second power of coefficient 62 is proportional to diffusivity in the normal
way. In general case superposition of both contributions takes place.

Let us consider consequences of some simplifications in the proposed model.
In the case of laminar, i.e. nonrandom flow, dispersion of velocities will be charac-
terised by J-function, as in the stationary case the liquid velocity is a deterministic
function of position (Eq. (9)), given by relation

Ss(v | x) = 8(v = v(x)) (54)
or for the output velocity (see Eq. (18)) by relation
fo(v) = o,(v —v.). (55)

On the other hand in the case if diffusion is neglected residence time distribution
of a particle is only a function of liquid velocity and conditional probability density
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defined by Eqs (20) and (21) will be in this case the Dirac function
S10(0 ] v) = 6(6) = 54(6 — 8(v)) - (56)

It is obvious that substitution of the last relation into corresponding equations
(Eq. (47)) is expressing the conditions of macromixing. The expected residence time
distribution according to Eq. (22) depends only on distribution of liquid velocities;
by a slightly different procedure it has been demonstrated earlier®! that at certain
conditions it is possible to reach the exponential residence time probability density.

Substitution of Eq. (56) into Eq. (29) leads to divergence of the first right hand
side integral and variance of residence time distribution at macroflow is thus
rising to infinity.

When on the contrary Eq. (55) is substituted into Eq. (29) this variance is equal
to zero. This is the case of maximum effect of interaction between individual mole-
cules, i.e. the case which according to Zwietering is called the maximum mixedness.
Similar considerations have led Hanley and Mischke?? to apply the experimentally
found value of variance (more accurately the quantity which is resulting from it)
as the measure of “miscibility” in a chemical reactor in which a second order reaction
takes place.

Let us consider that interaction between liquid particles is so intensive (diffusivity
increases to infinity) that immediately after the entrance of the indicating particle
into the mixer is its position characterised by a uniform probability density. This
means that this density is not a function of liquid velocity and that its residual resi-
dence time does not depend on its preceding history i.e. on its age. It is possible to
prove that probability density is in this case an exponential function. Variance
according to Eq. (29) is obviously equal to zero. Mixer then operates as an ideal one.

When finally Egs (55) and (56) hold simultaneously the usual piston flow is con-
cerned.

It is also worth mentioning that the mean residence time of a system of indicating
particles found at one realisation is a random function and depends on velocity
distribution by which is this system carried by the mixer, i.e.

o) = j 0f10(0 | v) d0 (57)
V]
and only the expected value of this quantity gives the familiar relation

M[0(v)] = I ) j 0110(0 | v) Fo(v) d24(v) d0 = @V, (58)
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where V is the volumetric flow rate of liquid through the mixer. The analysis made
by Vaclavek?* is not correct in this point, as could be immediately seen after substi-
tution in the extreme case into Eq. (57) from Eq. (56).

But other conclusions reached by Véclavek?*'25 are in full agreement with the
relations derived here; it concerns e.g. Eqs (23) or (32) which the author has
obtained on basis of considerations on the material balance of the input signal.
As very important from the point of practical significance is considered Eq. (42).
Its first term in square brackets of the subintegral term enables to calculate the “usual”
value of dispersion of the output signal at the passage of stationary random signal
through the mixer with deterministic properties. Second term represents the stochastic
effect of the mixer and is always positive, as has also been proved by Viclavek, is
equal to dispersion of the integral of product of two centered quantities, i.e. of the
response to the unit impuls of the mixer and inlet signal and is given by relation

+ o + 0
f J K¢(0’ 01) Ki(ol - 9) do d91 =

- J-®

D[ I:{¢(9) — M[#(0)]} {C.0) - &} de] 20. (59)

Thus the smoothing ability of the stochastic mixer defined by Eq. (43) is always
worse than ability of the deterministic one while this decrease in smoothing ability
depends both on function of the own mixer and on stochastic characteristics of the
own input signal. Thus it is necessary in designs and calculations of the nonideal
mixer as an optimal linear filter always to prove that the proposed system will operate
as deterministic one or that stochastic effects of the own mixer are negligible as con-
cerns the smoothing effects.

LIST OF SYMBOLS

a constant in Eq. (2) T !

a; coefficients in Eq. (46) T

b constant in Eq. (3) T !

c concentration ML™3
C random concentration signal ML™3
D operator of variance

fi.f»fy  probability density (TL™?)3
Sasfss fo» fo probability density (TL™H3
fs probability density (L™hH?
5110 residence time probability density T !

£, probability density (L™hH?
h time interval T

F residence time distribution function 1
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kyy variance of position of indicating particle L?

Ky covariance of position and particle velocity LT !

kyy variance of particle velocity L*1"2

K autocorrelation function

M operator of expected value

n outside normale 1

P probability

q ratio of variances of the output and input signals 1

R autocorrelation function

1 time T

T time interval T

u vector of initial velocity LT !

v velocity vector LT !

v random velocity vector LT !

v volumetric flow rate L31 !

w Wiener process T!/?

x position vector L

X random position vector L

y initial position vector L

¢ residence time probability density T !

;} parameters in Eqs (49) and (53) ’Ir,Til

s, Dirac function L3

€ Parameter in Eqs (49) and (53) LT !

2 time interval T

4 standard deviation (see (4)) LT /2

T time T

Q volume L3
Subscripts

i assigned to input signal

e assigned to output signal

v assigned to velocities

x  assigned to spacial coordinates

¢ mean value of ¢
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