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An attempt is made here to describe distribution of residence times of a fluid in a nonideal flow 
mixer for turbulent flow of the charge, i.e. for the case when the flow velocity exhibits random 
fluctuations. The analysis is based on the assumption that the flow of fluid in mixer may be 
considered as a stationary Markov's process and is aimed at application of the mixer as a linear 
filter. 

The most frequent approach to study of flow mixer - both from theoretical and experimental 
point of view - is study of residence time distribution of fluid in this mixer. This approach has been 
introduced in chemical engineering for the first time probably by Danckwerts1 • Residence time 
distribution function is used in chemical engineering for analysis of operation of flow units, 
it is possible to determine the ratio of nonactive (dead) regions and by-pass flow, intensity of 
backmixing and deviations from ideal mixer and in the case of linear chemical kinetics, conversion 
in flow reactors2. 

With development of process modelling by computers attention is paid to another function 
of the flow mixer which is adequate to the function of a linear filter in communication engineer­
ing3 • Transfer and first of all smoothing of the input concentration or less frequently of tempera­
ture signal by the mixer is concerned. The considered transfer of the signal by flow mixer can be in 
general described by an integral operator 

f+OO 

Ce(t) = -00 4>(t, T) ClL) dT, (1) 

where C j and Ce are input or output signals (e.g. concentrations) whiC'h are in general random 
functions Of time, function I/J is probability density of residence times in the mixer. 

The first studies concerning application of flow mixers for smoothing of non-desirable fluctua­
tions of properties of material streams in continuous processes were publi~hed in chemical engi­
neering literature simultaneously with introduction of the concept of residence time distribution 
in such units. For example Danckwerts1 and SeIlers4 .5 have in general demonstrated dependence 
of variance of concentration fluctuations in the outlet stream of the flow mixer on residence time 
distribution of the liquid in it and on stochastic properties of concentration fluctuatiom in the 
input stream of the mixer. Katz6 and Kramers with Albeda 7 have studied smoothing function of 
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the cascade of ideal mixers for the case when the input concentration signal is a random stationary 
signal with the autocorrelation function R(r) of the form 

R(r) = q~exp(-al-ri), (2) 

where (if is the variance of the signal and a is a constant. The same signal at the inlet into the mixer 
has been considered by Baun and Katz8 who have expressed the residence time distribution of 
liquid in the mixer by X2 distribution and e.g. by Kraj9 and Graichenlo .11 who have dealt first 
of all with determination of capacity of the mixer necessary for reaching of the required degree 
of smoothing of fluctuations. 

Considerable attention has been paid in the published studies to ~mcothing of periodic con­
centration fluctuations (especially harmonic and rectangular pulses e.g. 12 -14.20.21). These 
authors have demonstrated that this type of fluctuations can be completely eliminated by suitable 
arrangement of the mixer (by introducing the by-pass and short-circuiting streams). 

Recently there has been published a number of papersl5 -19 where an attempt has been made 
to optimise the smoothing efficiency of the mixer to whose inlet comes a staticnary random con­
centration signal with the autocorrelation function of the form (2) or of a more general form 

R(-r) = q~ exp (- (I1-r!) cos b-r , (3) 

where h is characterising the periodic component present in the input signal, by suitable arrange­
ment of the flow system (i.e. by changing the shape of the distribution function of residence 
times). Conclusions of these studies have demonstrated that by addition of the by-pass (or short 
circuiting) stream of the mixer it is possible to reach (at suitable Eelection of parameters of the 
system mixer-by-pass stream) a better smoothing then with the mixer alone, also in the ease of 
random (not of only periodic) inlet signal. 

Very small attention has been devoted in the publi~hed litelature to experimental determination 
of smoothing effectiveness of flow mixers and comparison of the so obtained data with theoretical 
values. Visman and Krevelen20 have measured the degree of ~moothingofperiodic concentration 
fluctuations in the bubbled mixer and experimental results wele treated in the form of a correlation 
in which the smoothing degree si plotted against process conditions (volumetric flow rates of 
liquid and gas, frequency of fluctuations etc.) Comparison of experimental data with theoretical 
model has not been made. Hiby and Tsuge21 have measured the degree of smoothing of a periodic 
concentration signal. The mixer they have used was mixed only by the stream of entering liquid 
and smoothing degrees measured were in good agreement with values determined on basis of fhc 
model of flow in the mixer. 

Smoothing action of the flow mixer determine as follows from Eq.U) two factors - statistical 
properties of the inlet signal and residence time di~tricuticn function of liquid in the mixer. Even 
that the stochastic character of residence time distribution function in the nonideally mixed flow 
system has been proved experimentally22 - 25 and for some cases al~o described theoretically26 - 29 
a very small attention has been devoted in literature to the effect cf this fact en the ~mcothing 
efficiency of the mixer. For example Vaclavek24.25 on basis of theoretical analysis by Pugl!(hev3 

has used for description of the flow system statienary stc(hastic operator and has derived a rela­
tion describing the increase in value of variance of concentration signal at the outlet from the mixer 
if compared with the case when the system behaves in deterministic manner. He has demonstrated 
the decisive role of the autocorrelation function of residence time distribution in the mixer on this. 
icreanse in variance. 
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[n this study and attempt is made toward explanation of relation between linear 
operator describing the mixer from the point of view of the transfer of concentration 
(or some other) signal and hydrodynamic conditions in this nonideally stirred mixer 
and formulation of assumptions and conditions necessary for description of the 
smoothing effectiveness of this mixer. 

THEORETICAL 

BASIC CONCEPTS AND RELATIONS 

Let us consider a flow mixer schematically depicted in Fig. 1 of volume Q x fully filled 
by incompressible liquid. Let us assume that it is possible to observe motion of one 
liquid particle. called indicating particle. Its po~ition in moment t is given by the end 
of the p:Jsition vector X(t). According to the model presented earlier30 •31 for the 
one-dimensional space it is considered that the indicating particle is moving so that 
it is carried in each moment by the liquid with the velocity V(t). To this macro-motion 
is superimposed micro-motion due to random interactions with other particles so 
that the resulting effeet is sati5fying conditions of the Wiener's process W(t). Thus 
the relation holds 

dX(t) = V(t) dt + (J d W(t) , (4) 

FIG. 1 

Motion of indicating particle in the mixer 

----------
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which is the stochastic differential equation describing motion of the indicating partic­
le (Fig. 1). 

Quantities X(t) and V(t) are in general random functions of time for which there 
exists in each momcnt a probability density function defined by relation 

fl(X, v; t) = lim (ljt1Qx t1Qv) P{ X(t) E t1Qx(x), V(t) E t1Qv(v)} . (5) 
AQx--+O 
A.Q,-+O 

The probability that the observed particle is located in the moment t in a small 
ncighbourhood t1Qx of the point with the position vector x is written in the braces. 
Velocity of liquid and thus also indicating particle velocity in this moment takes 
value from small neighbourhood of the point v in the configuration space of velocities 
Q,. Velocity of particle in each moment can be really considered as equal to the velo­
city of liquid with respect to the fact that the part of change in the position vector 
dX(t) corresponding to the Wiener's process does not have a derivative and thus it 
cannot determine the relative particle velocity with respect to that of liquid3o •32 • 

Let us denote that the space Q x of the charge is limited by its boundaries, while the 
~pace of velocities is not limited. Relation (5) is not written exactly as there is not 
prescribed the manner of convergence of small elements t1Qx and t1Qv' More exact 
definition can be found in corresponding literature (e.g. 33). Here the illustrative 
interpretation of the considered phenomena is considered pnmartly. 

To be able to describe "behaviour" of the particle in the mixer following postulate 
is accepted: PI. Sum of random' and nonrandom effects acting on the liquid (i.e. 
mechanical forces and reactions, first of all action of the mixer) is such that the random 
position of liquid particles and liquid velocity can be interpreted as stationary 
Markov process34 . 

From the madc assumption results that forces, either deterministic or of random 
character could not be explicite functions of time, the mixing unit must be operated 
so that liquid flow is in steady state. 

This a~sumption makes possible to write the relation for transitive (conditional) 
probability density for position of particle and liquid velocity in the form 

fz(x, v; t I y, u; r) = 

= lim (ljt1Qx t1Qv) P{ X(t) E t1Qx(x), V(t) E t1Qv(v) I X(r) = y, V(r) = u} 
Anx-+O 
M2,-+O 

[t > rJ ' (6) 

where the relation in the brace is expressing probability that in time t the particle 
will be situated in small subspaces t1Qx(x) and t1Qv(v) at the condition that in pre­
ceeding moment r it has been situated in the point y and its velocity was equal to u. 
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In the case the distribution of particle positions and liquid velocities is known in the 
moment T, characterised by the probability density f3(Y, u, T) it is possible to write 

flex, v; t) = r r f2(X, v; t I Y, u; T)f3(Y' u; T) dDy(u) dDx(Y), (7) 
J ax J Uv 

where the suggested integration is made, with regard to variables Y and U over the 
whole mixer volume Dx and the unlimited configurative space of velocities. Relation 
(7) is expressing the basic property of the Markov process, i.e. that this process 
in the moment t depends only on the state of the process in a moment T < t and is 
not a function of states in preceeding moments. 

For the stationary process the transitive probability density is a function only 
of the time interval between moments t and T and not of moments alone34, i.e. 
the relation holds 

f2(X, v; t I y, u; T) = f2(X, v; t - T I y, u) . (8) 

With regard to assumption PI a stationary probability density for liquid velocity 
which is not a function of time must exist in each point of the charge, i.e. in each 
point of the space Dx. It could be expressed by relation 

fs(v I x) = limfiv; t I x). (9) 
1-+ 0() 

Both these expressions are characterising distribution of liquid velocities in the point 
x E Dx (conditional probability densities are meant) after decay of transition effects, 
i.e. after steading of the process from the moment of beginning of operation of 
the flow mixer. 

Relation between liquid velocities in different time moments from decay of transi­
tion effects gives the so called second probability density33.34 defined by relation 

f6(V; t - T I u, x) = 

= lim (l/~Dy) p{V(t - T) E ~Dy(v) I yeO) = u, X(t - T) = X(O) = x} 
40,-+0 

[t> T] 

(10) 

which is with the stationary (so called first) probability density related by relation 

fs(v I x) = f f6(V; t - T I u, x)fs(u I x) dDy(u) 
Ov 

(11) 
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which is expressing the obvious invariability of translation of "steady" distribution 
of velocities with respect to the time axis. 

RESIDENCE TIME OF INDICATING PARTICLE IN THE MIXER 

Let us denote motion of indicating particle from the moment of its entry into the 
mixer up to the moment when this particle leaves the mixer. Further assumption must 
be introduced in this case: P2. Particle enters into the mixer through the inlet hole 
in the point Xi with velocity VI(t) which is also a stationary process and leaves the 
mixer through the exit hole in point Xe after time interval Twith velocity Ve(t). Each 
particle can enter and leave the mixer only once. 

This assumption first of all simplifies the situation as it substitutes the area of inlet 
and outlet hole by a single point. This simplification is adequate to the assumption 
that particle is passing through an arbitrary point of the cross-sectional area of the 
inlet hole with uniform probability and that distribution of velocities Viet) is also 
identical for each point of this cross section. Moreover there is assumed that the ine­
quality Viet) . n i < 0, holds where n i is the external normal to the area of inlet hole. 
Identical assumption holds for the exit hole with the difference that Ve(t) . ne > O. 

Finally, this assumption makes possible to write the initial condition for description 
of motion of the indicating particle in the form 

(12) 

where <5 xC .) is the three-dimensional Dirac function which is expressing the fact 
that in the initial moment the particle is located in the inlet hole. 

Now it is possible to write the probability density f1(') for position of the indicating 
particle and liquid velocity in the mixer which enters into it in moment 'r. With respect 
to Eqs (7), (8) and (12) the relation is obtained 

fl(x, v; t - 'r) = f r f2(x, v; t-'r I y, u) <5 x(y-x i)fs(u I y) dQv(u) dQx(Y). (13) 
!l" Jnv 

Let us denote the time interval in this equation by symbol (J = t - 'r and calculate 
the marginal probability density for position of indicating particle by integration 
over the velocity configuration space Qv according to relation 

fx(x; (J) = f flex, v; (J) dQvCv) , 
Dv 

(14) 
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where 1,(.) is characterising the probability that the indicating particle, in the time 
interval 0 from the moment of entrance into the mixer, will be located in close vicinity 
of the point x, without regard to its velocity. Then it is possible to calculate easily 
the distribution function of residence times in the mixer33 by use of relation 

F(e) = 1 - P{T > O} = 1 - f I,(x; 0) dQx(x). 
Q, 

(15) 

The integral in the last term is expressing the probability that the particle is in moment 
t still in the mixer. 

The corresponding probability density for the residence time T is then determined 
from relation 

17(e) = - F(O) = - - Ix(x; 0) dQx(x). 8 8 f 
80 80 Q, 

(16) 

The function 17(') is usually determined experimentally from the mixer response 
to the input signal in the form of Dirac (unit) impuls. Here is explained why - at least 
within the limits of the presented model - it is not possible to determine this function 
by one experiment. 

Let us assume first of all that it is possible to interchange the sequence of mathe­
matical operations in Eqs (14) and (16). Then the relation can be written 

18(0, v) = - ~ f II(X, v; 0) dQx(x) , 
80 Q, 

(17) 

which is denoting the joint probability density of particle residence times and liquid 
velocity independently on position of the particle. This means that expres~ion 

18(t - r, v) dt denotes probability that the indicating particle leaves the mixer in the 
time interval [t, t + M] with velocity close to v (more accurately said by velocity 
from subspace dQvCv)). 

The marginal probability density with respect to variable v is obtained by integra­
tion over all possible values of O. There obviously holds 

It is possible to explain by this last equation the physical meaning of function 19' 
The second integral is characterising all possible passages of the indicating particle 
with various velocities at the assumption that this particle in the moment r has entered 
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into the mixer. It is equal to the third integral which at stationary liquid flow is 
characterising distribution of flow velocities of all liquid particles at the outlet of the 
mixer in the moment t. Each of these particles could have entered into the mixer in 
any moment T < t. Function 19 is thus characterising distribution of liquid velocities 
at the outlet from the mixer i.e. with respect to Eq. (9) the relation must hold 

{I 9) 

Let us write finally, probability density for residence times T conditioned with 
rc~pect to liquid velocity at the outlet from the mixer 

I (0 I v) = Is(O, v) . 
10 19(V) (20) 

Probability density 110 is a function of parameter v which could be randomised33 . 

According to considerations made earlier31 this means that it is possible to consider 
probability density 110 as a function of random liquid velocity Ve(O) at the outlet 
from the mixer and that it is also a random function of time according to relation 

110(0 I v) = 110(0, Ve(O)) = ¢(O). (21) 

Distribution of liquid velocities at the outlet is the result of all, thus also of random 
effects which act on this liquid during its passage through the mixer. These effects 
then cause the stochastic character of residence time distributions in the mixer which 
is expressed by "stochastic" probability density ¢(O). 

The expected value of this function we can found by integration over the con­
figuration space Qv i.e. over all values of the randomised parameter v. With regard 
to relations (14), (19) and (20) the relation is obtained (again possibility of interchange 
of the sequence of mathematical operations is proposed) 

which is the "usual stochastic" probability density of residence times in the mixer. 
From Eqs (I8), (20) and (21) moreover after integration results 

(23) 

which means that with the probability equal to one the indicating particle leaves the 
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mixer. The same conclusion also holds for the expected value 

Now the second moment of function ifJ will be calculated. 

AUTOCORRELATION FUNCTION FOR PROBABILITY DENSITY OF RESIDENCE TIMES 

OF INDICATING PARTICLE IN THE MIXER 

(24) 

Second important characteristic for description of motion of the indicating particle 
is the correlation or autocorrelation function. In the case of Markov processes 
whose probability characteristics depend at maximum on two time arguments this 
function is usually sufficient (together with the expected value) for description of 
the considered process. 

Let us define by usual procedure the autocorrelation function for the probability 
density of residence times ifJ 

(25) 

where the time interval 01 is given by relation 01 = tl - 'r 1• 

Here is explained what is - within the frame of the model presented - the reason 
for the correlation link between functions ifJ(O) and ifJ(Ol)' Function ifJ(O) according 
to the proposed model is randomised by liquid velocity at the outlet from the mixer 
V.(O) and function ifJ(Ol) by liquid velocity V.(Ol)' Autocorrelation link between 
these two velocities is obviously the reason of the link between the considered sto­
chastic probability densities of residence time. With regard to Eqs (8), (11) and (19) 
is the link between velocities at the outIed given by relation 

f9(V) = f f6(V; ° - 01 I u, X.)f9(U) dQ.(u). 
Dv 

(26) 

Note: According to assumption P2 the parameter Xc is a constant and will be 
omitted in the following part. 

This approach is now used for definition of the autocorrelation function K. 

(27) 
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It is obvious that autocorrelation function K4> depends not only on intervals 0 and 01 

but also on their difference. 

In the case that intervals 0 and 01 reach the same values, the "randomisation 
factors", i.e. liquid velocities V(O) and V(0)1 will also become identical. Transitive 
probability density f6 is so transformed into the Dirac function 

lim fey; 0 - 01 I u) = (\(v - u) (28) 
6) -JoB 

and Eq. (27) after integration with respect to u becomes into the relation for dispersion 
of residence time probability density 

K4>(O,O) = D[¢(O)] = l/io(O I V)f9(V) dQv(v) - [In/lo(O I V)f9(V) dQv(v)J 

(29) 

Finaly another property of the autocorrelation function K4>(O, 01) is mentioned. 
Let us define the integral 

(30) 

The relation for its dispersion holds3 

(31) 

With regard to relations (23) and (24) the value of integral I is equal to zero i.e. 
to constant value. Dispersion of constant is then also equal to zero and thus there 
holds 

(32) 

Probability characteristics derived previously, i.e. the expected value of residence 
time distribution defined by Eq. (22) and its autocorrelation function, determined by 
Eqs (25) and (27) with sufficient accuracy - with respect to next considerations -
describe random phenomena originating due to the action of the mixing device. These 
functions can be estimated in the statistical sense by repeated measurements of res­
ponses to the unit impulse under the same conditions. The fittness of the estimates 
increases with the number of measurements repeated. 
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The relations derived in previous parts are now applied for study of the mixer 
as a linear filter. 

TRANSFORMATION OF RANDOM CONCENTRATION SIGNAL AT PASSAGE THROUGH 

THE NON IDEAL MIXER 

Let us consider a concentration signal of indicating compound Ci ( r) (Fig. 1) entering 
continuously into the mixer. An attempt will be made here for determination of the 
probability characteristics of the outlet concentration signal Cc(t). 

In general this relation can be written by use of integral (1) in which the integral 
core ¢ is in general a random function of two variables (moment of inlet rand 
moment of outlet t). 

The form of this function or its random character is determined by flow in the mixer, 
i.e. by the action of the mixer and the effect of entering stream. It is demonstrated 
in which sense this integral core is identical with function ¢ derived in preceding 
paragraphs, i.e. when the equivalence could be written 

¢(t, r) = ¢(t - r) = ¢(O) (33) 

i.e. it is possible to substitute for t and T their difference. 

Further assumption is therefore introduced concerning properties of the inlet 
signal: P 3. Concentration signal C i ( r) is a continuous ra11dom function of time which 
is stationary and ergodic with the mean value Ci = const. and autocorrelation function 
Ki(h). This signal does not depend on liquid distribution entering the mixer and is 
not affecting by any way flow in the mixer. 

Second part of this assumption in accordance with the preceeding considerations 
implies the statement that the input signal C i and integral core ¢ are statistically in­
dependent. This holds obviously only approximately as fluctuation of liquid velociiy 
in the inlet piping affect to a certain extent input signal. But it is expressing the idea 
that the basi cal causes of concentration changes are of different origin (they for 
e.g. originate at production of a component whose concentration is considered) 
than the effect of flowing liquid, its mixing effect in the inlet piping is thus considered 
to be negligibly small. 

The statement in Eq. (1) is now preeised. The assumption of continuous input of the 
concentration signal makes possible to integrate over the unlimited extent of variable r. 
The ergodic property of the input signal will not be considered yet and at first the 
expected value of both sides of this equation are looked for 
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Second relation holds at the assumption that it is possible to interchange the in­
tcgration with calculation of the expected value and that, as results from assumption 
P3, the functions ¢ and C j are independent. With respect to Eq. (22) the expected 
value of ¢ is a function of the difference of integral variables ¢ = t - 1" so that after 
the interchange of variables the relation holds 

(35) 

The last equation holds also with respect to Eq. (24). So the familiar relation has 
tJecll obtained 

(36) 

according to which is the expected value of the input concentration signal at consi­
dcrcd conditions independent of time and is equal to the expected value of the input 
,igl,al. 

Now the second moment for Eq. (1) is written. With rcgard to the assumption of 
independence of functions ¢ and C j the relation is obtained 

With regard to Eqs (25) and (27) the second moment of function ¢ depends only on the 
difference of their arguments so that after analogous interchange of variables as in 
calculation of integral (35) the relation is obtained 

Second moments with respect to origin are in this function substituted by central 
moments, i.e. by autocorrelation functions, with Eqs (22), (25), (35) and (36) taken 
into account the relation follows 

(39) 

If the subintegral terms in square brackets are multiplied all terms including the 
constant coefficient c~ vanish. First of them because the integral of autocorrelation 
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function Kcj> is with regard to Eq. (32) equal to zero. Second term is on basis of Eq. 
(24) equal to cf, this term vanishes with regard to the second one in Eq. (36) with the 
corresponding term on the left hand side of relation (39). Finally the autocorrelation 
function Ki depends according to assumption P3 only on the difference of its argu­
ments. Thus 

(40) 

and Eq. (39) is simplified 

(41) 

It is obvious that the autocorrelation function Kc of the output signal is also a function 
of only a single argument. For identical values of arguments t and t1 Eq. (41) is 
reduced to the relation for variance of the output signal 

and relation 

K.(O) D[ C.(t)] 
q=--=---

KJO) D[Ci(r)] 
(43' . ) 

i.e. ratio of dispersions of the output and input signals is used usually as the measure 
of smoothing ability of the mixer. 

Finally it is demonstrated that at validity of the first part of assumption P3 the 
characteristics of the output signal can be found from one experimental realisation. 
The inlet signal is according to this assumption a stationary ergodic function. Value 
of the autocorrelation function converges to zero if its argument rises to infinity3. Thus 
there holds lim Ki(h + 0 1 - 0) = 0 and on basis of Eq. (41) also lim Kc(h) = o. 

h-+oo b-+co 

The output signal is thus also a stationary ergodic functicn and for calculation 
of the mean value and of autocorrelation function the relations can be then used 

(44) 

Ke(h) = ;~n:, (l/2T) f:: f:: f::U7(0)!7(01) + Kcj>(O, 01)] . 
. Ci(h + 01 - 0 + td Ci(t 1) dO dOl dt l • (45) 
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Relations (43) to (45) can be in practice used for calculation of smoothing effectiveness 
of the mixer. 

DISCUSSION 

As has been already stated in introduction of this study, ideas and relations presented 
here have been aimed at more deep analysis of integral operator in Eq. (1) first of all 
with regard to smoothing effectiveness of nonideal mixer. 

As is known in communication engineering35 or in theory of automatic control 
this operator is used for calculation of response (in our case denoted as Ce(t)) to the 
input signal Clr) in systems described by ordinary differential equations (or by their 
system) with the time argument 

n 

I ai(t) (diCe(t)/dti) = Clt). (46) 
i=O 

It is assumed that the integral core <p(t, r) is a deterministic function of two (time) 
arguments. Moreover it has been proved35 that as long as the coefficients a i in the 
mentioned differential equations are not a function of time both arguments in the 
integral core can be substituted by their difference, i.e. there holds <p(t, r) = <p(t - r). 
Integral operator then is sometimes called a stationary one. Input signal then might 
be both deterministic or stochastic with the adequate character of response. 

As has been correctly pointed out by Vac1avek24 •25 the response can become sto­
chastic even in the case when the input signal is determinstic. This is the case when 
character of flow in the mixer is causing random fluctuations of the output signal, 
i.e. the integral core <p becomes stochastic. 

But in this case the coefficients of mentioned differential equations need to be 
(random) functions of time and the question arises whether or at which conditions 
it is possible to consider the stochastic integral core as a function of a single argument, 
i.e. whether or at which conditions there exists a stationary stochastic integral opera­
for in the form 

f+OO 

Ce(t) = _ 00 <p(t - r) CJr) dr . (47) 

Vac1avek24 ,25 postulates the existence of such operator without proves. This study 
represents an attempt for a prove of Eq. (47) for the concrete chemical engineering 
equipment. It is necessary to state that the assumptions made here lead only to the 
statement that the first two moments of terms in Eq. (47) hold. Analogically to the 
terminology used in studies of stochastic functions it is possible to state that there 
exists a stationary stochastic integral operator in a wide sense. 
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General prove would be perhaps very complicated as e.g. it is known 36 that, if 
distribution of the input signal is not Gaussian, it is possible only with difficulties 
to obtain information on distribution of the input signal. Distribution of the input 
signal could be obviously approximated by normal distribution in the best case ap­
proximately as the concentration signal could reach only nonnegative values. Theo­
retically it could be possible to use the procedure described in the study of Kattan 
and Adler37 for computation of conversions of nonideal stirred reactor. But functions 
of concentration distributions in this study are a priori postulated and it is not ob­
vious how it could be possible to use this procedure in applications. 

Relations derived in this study are based on the basic concept of motion of indi­
cating liquid particle in the stationary (in stochastic sense) moving incompressible 
liquid, while both these processes could be considered to be stationary and Markov. 
It has been demonstrated earIier30 •31 that on basis of the lawoflarge numbers motion 
of large quantity of indicating particles represents a spread of a concentration impuls 
of the indicating compound. Both these two assumptions are the necessary conditions: 
Postulate in Markov process property means that motion of particles depends only 
on initial conditions and is thus not a function of some transitive states in next 
moments (i.e. the familiar analogy exists with deterministic motion of the mass point 
in the force field). Second assumption on stationarity of the process makes possible 
to substitute for the two time arguments of the Markov process ("simultaneous" 
moment t and initial moment T) by their difference. It is necessary to realize the diffe­
rence in assumptions on liquid motion and of the indicating compound: It is assumed 
that while liquid motion has reached steady state before the moment of inlet of the 
indicating compound (e.g. from the beginning of the experiment, when the non mixed 
liquid was at rest) concentration of the indicating compound could not steady in 
the flow system( as long as the input signal depends on time). 

To illustrate this statement let us give an example on motion of the indicating par­
ticle in an unidimensional unlimited space which could be solved analytically. At 
assumptions concerning forces which act on this particle made in earlier studies30 

it is possible to write the relation for the transitive probability density of particle 
position and its velocity (illustration of function 12 in Eqs (6) and (8)) in the form 

I;(x, v, t - T I y, u) = 

____ 1 ___ exp {_ ~vv(x - x)2 - 2kxix - x) (v - v) + kxx(v - v?} 
21t (kxxkvy - k;y)I/2 2(kxxkyy - k~y) , 

(48) 

where parameters of this equation are given by relations 

.~ = P(t - T) + y + (Pia) (exp (-a(t - T)) - 1) + (ull1.) (1 - exp [ -11.(t - T)]) ; 
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v = p + (u - P) exp [ - ex( t - -r)] , 

kxx = (282Iex)(t - -r - [exp(-2ex(t - -r))/2ex] + [2 exp (-ex(t - -r))lex] - 3/2ex) , 

kxv = (82Iex) (1 + exp [ -2ex(t - -r)] - 2 exp [ -ex(t - -r]), 

kvv = 8 2(1 - exp (-2ex(t - -r))). (49) 

Particle velocity equal to the liquid velocity is in this case not a function of its position 
and corresponding transitive probability density is given by relation (illustration of 
function 16 in relation (10)) 

1 [(v - V)2J 
1:( v; t - -r I u) = .J(2rckvv) exp - 2kvv . (50) 

Relation for steady flow is in this case obtained when the argument t increases to 
infinity (illustration of function Is and of equation (9») 

I:(v) = lim I:(v; t - -r I u) = 1 exp [- (v - /)2J . (51) 
1-00 J(2rc) 8 28 

It is possible to prove that there holds 

= exp - - du. J + co 1 [( v - v)2 (u - P)2J 
_ 00 2rc8.J(kvv) 2kvv 282 

(51a) 

Finally it is possible to use the initial conditions (illustration of function 13 and 
relation (12)) 

(52) 

and to prove that there holds (illustration of function 11 and Eq. (13)) 

I:(x, v; t - -r) = f:: f:ji(x, v; t - -r I y, u) c5 x(y - xi)I:(u) du dy, (52a) 

where the result is also a twodimensional normal distribution as in relation (48) 
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with the difference that corresponding parameters are given by relations 

x = pet - or) 

v=p 
kxx = (2e2/ex 2) (ex(t - or) - 1 + exp (-ex(t - or))) 

kxv = (e 2 /ex) (1 - exp (ex(t - or))) 

(53) 

It is obvious that parameter v denoting the expected velocity and its variance kvv 

are not functions of time, other parameters describing motion of particles express, 
in accordance with the earlier considerations made, spread of concentration of indi­
cating particles in time in the stream of stationary liquid. 

Note: It is obvious that if argument t rises particle concentration (proportional to 
probability density 11) converges for each point of unlimited axis toward zero. These 
cases obviously do not have a large practical significance. But in the last study it has 
been demonstrated38 that in a limited (i.e. nonflow) unidimensional mixer it converges 
to uniform probability density, i.e. concentration of indicating particles is of course 
in steady state at all points of the mixer equal. 

Here are also mentioned considerations which lead as limiting cases to usual types 
of flow in the mixer: From Eq. (4) and on basis of earlier made considerations (for 
a unidimensional case30) results that there exist two cases of a random shift dX 
of the particle in the mixer. This could be either the effect of liquid velocity Vet) dt; 
in the case this velocity is a random function oftime turbulent contribution to random 
motion is concerned, or in the opposite case lamirar flow is concerned. Second term 
of Eq. (4) (J d Wet) is characterising the diffusion contribution, i.e. mutual interactions 
of particles; second power of coefficient (12 is proportional to diffusivity in the normal 
way. In general case superposition of both contributions takes place. 

Let us consider consequences of some simplifications in the proposed model. 
In the case of laminar, i.e. nonrandom flow, dispersion of velocities will be charac­
terised by c5-function, as in the stationary case the liquid velocity is a deterministic 
function of position (Eq. (9)), given by relation 

Is(v I x) = c5,(v - vex») (54) 

or for the output velocity (see Eq. (18») by relation 

(55) 

On the other hand in the case if diffusion is neglected residence time distribution 
of a particle is only a function of liquid velocity and conditional probability density 
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defined by Eqs (20) and (21) will be in this case the Dirac function 

II0«() I v) = cI>«() = Do«() - B(v) . (56) 

It is obvious that substitution of the last relation into corresponding equations 
(Eq. (47» is expressing the conditions of macromixing. The expected residence time 
distribution according to Eq. (22) depends only on distribution of liquid velocities; 
by a slightly different procedure it has been demonstrated earlier3I that at certain 
conditions it is possible to reach the exponential residence time ptobability density. 

Substitution of Eq. (56) into Eq. (29) leads to divergence of the first right hand 
side integral and variance of residence time distribution at macroflow is thus 
rising to infinity. 

When on the contrary Eq. (55) is substituted into Eq. (29) this variance is equal 
to zero. This is the case of maximum effect of interaction between individual mole­
cules, i.e. the case which according to Zwietering is called the maximum mixedness. 
Similar considerations have led Hanley and Mischke22 to apply the experimentally 
found value of variance (more accurately the quantity which is resulting from it) 
as the measure of "miscibility" in a chemical reactor in which a second order reaction 
takes place. 

Let us consider that interaction between liquid particles is so intensive (diffusivity 
increases to infinity) that immediately after the entrance of the indicating particle 
into the mixer is its position characterised by a uniform probability density. This 
means that this density is not a function of liquid velocity and that its residual resi­
dence time does not depend on its preceding history i.e. on its age. It is possible to 
prove that probability density is in this case an exponential function. Variance 
according to Eq. (29) is obviously equal to zero. Mixer then operates as an ideal one. 

When finally Eqs (55) and (56) hold simultaneously the usual piston flow is con­
cerned. 

It is also worth mentioning that the mean residence time of a system of indicating 
particles found at one realisation is a random function and depends on velocity 
distribution by which is this system carried by the mixer, i.e. 

B(v) = f: ()II0(0 I v) dO (57) 

and only the expected value of this quantity gives the familiar relation 

M[B(v)] = fao f 0/10(0 I V) 19 (V) dQv(v) d() = QxIV , 
o Uv 

(58) 
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where V is the volumetric flow rate of liquid through the mixer. The analysis made 
by Vaclavek24 is not correct in this point, as could be immediately seen after substi­
tution in the extreme case into Eq. (57) from Eq. (56). 

But other conclusions reached by V!iclavek24 ,2s are in full agreement with the 
relations derived here; it concerns e.g. Eqs (23) or (32) which the author has 
obtained on basis of considerations on the material balance of the input signal. 
As very important from the point of practical significance is considered Eq. (42). 
Its first term in square brackets of the subintegral term enables to calculate the "usual" 
value of dispersion of the output signal at the passage of stationary random signal 
through the mixer with deterministic properties. Second term represents the stochastic 
effect of the mixer and is always positive, as has also been proved by Vaclavek, is 
equal to dispersion of the integral of product of two centered quantities, i.e. of the 
response to the unit impuls of the mixer and inlet signal and is given by relation 

f:: f::K+(O, ( 1) Ki(OI - 0) dO dOl = 

D[f~{t/>(O) - M[t/>(O)]} {Ci(O) - Ci}dO] ~ o. (59) 

Thus the smoothing ability of the stochastic mixer defined by Eq. (43) is always 
worse than ability of the deterministic one while this decrease in smoothing ability 
depends both on function of the own mixer and on stochastic characteristics of the 
own input signal. Thus it is necessary in designs and calculations of the nonideal 
mixer as an optimal linear filter always to prove that the proposed system will operate 
as deterministic one or that stochastic effects of the own mixer are negligible as con­
cerns the smoothing effects. 

LIST OF SYMBOLS 

a constant in Eq. (2) T- 1 

aj coefficients in Eq. (46) T 
b constant in Eq. (3) T- 1 

c concentration ML -3 

C random concentration signal ML- 3 

D operator of variance 

11.12.13 probability density (TL -2)3 

14.1s.l6.19 probability density (TL -1)3 

Is probability density (L -1)3 

17.110 residence time probability density T- 1 

Ix probability density (L- t )3 

h time interval T 
F residence time distribution function 
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n 
P 
q 

R 
t 

T 
u 

v 

v 
V 
w 
x 
X 

Y 
¢J 

;} 

T 

Q 

Subscripts 

variance of position of indicating particle 
covariance of position and particle velocity 
variance of particle velocity 
autocorrelation function 
operator of expected value 
outside norma Ie 
probability 
ratio of variances of the output and input signals 
autocorrelation function 
time 
time interval 
vector of initial velocity 
velocity vector 

random velocity vector 
volumetric flow rate 
Wiener process 
position vector 
random position vector 
initial position vector 
residence time probability density 

parameters in Eqs (49) and (53) 

Dirac function 
Parameter in Eqs (49) and (53) 
time interval 
standard deviation (see (4» 
time 
volume 

assigned to input signal 
e assigned to output signal 
v assigned to velocities 
x assigned to spacial coordinates 
c mean value of c 
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